This study aims to analyze the socio-economic conditions of districts/cities in East Java using Principal Component Analysis (PCA) and Hierarchical Clustering. Socio-economic data for 2023 from 38 districts/cities includes the percentage of poor people, regional GDP, life expectancy, average years of schooling, per capita expenditure, and unemployment rate. PCA was used to reduce the dimensionality of the data, facilitating analysis and visualization. The reduced data was then analyzed using Hierarchical Clustering to group districts based on similar socio-economic characteristics. The clustering results were evaluated with the Silhouette Index and Davies-Bouldin Index. This study identified four main clusters with different socio-economic characteristics. The best clusters have high regional GDP, life expectancy, average years of schooling, and high per capita expenditure and low unemployment rates. The worst clusters show a high percentage of poor people and high unemployment rates. These results assist the government in designing more effective policies to improve welfare in East Java.
Copyrights © 2024