This study evaluates earthquake-induced ground acceleration in Indonesia, which is located in the Pacific Ring of Fire zone, using Donovan's empirical method and comparing two clustering algorithms, Self Organizing Map (SOM) and K-Means. The main problem faced is the high risk of earthquakes in Indonesia and the need for effective methods to predict potential damage to buildings and infrastructure. The research objective is to evaluate earthquake-induced ground acceleration and identify acceleration distribution patterns using clustering techniques. The solution methods used include the application of the Donovan method to calculate ground acceleration based on BMKG data, as well as the use of SOM and K-Means algorithms to cluster the ground acceleration data. GIS and Python applications are used to visualize the clustering results. The results show that the Donovan method integrated with SOM and K-Means provides significant insights into the distribution of ground acceleration, thus assisting in risk evaluation, disaster mitigation planning, and the development of more effective earthquake-resistant infrastructure development strategies in Indonesia
Copyrights © 2024