Berita palsu atau disinformasi merupakan ancaman serius dalam ekosistem media online. Penyebaran berita palsu dapat mengganggu informasi yang akurat dan dapat mempengaruhi masyarakat dan opini publik. Dalam penelitian ini, Penulis mengusulkan pendekatan hibrida yang mengintegrasikan Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM) untuk menganalisis konten media berita online di Indonesia. Metode hibrid ini ditujukan untuk memahami dan menginterpretasikan dinamika informasi yang disampaikan melalui berita online dengan lebih efektif. Penulis mengumpulkan dan memproses dataset besar dari artikel berita online dalam Bahasa Indonesia, lalu menerapkan CNN untuk ekstraksi fitur teks dan LSTM untuk memodelkan sekuensialitas data dalam artikel. Hasil eksperimen menunjukkan bahwa model hibrid CNN-LSTM mampu meningkatkan akurasi klasifikasi topik berita dan sentiment analisis dibandingkan dengan metode standar. Penelitian ini memberikan wawasan baru tentang aplikasi pembelajaran mesin dalam media berita dan menawarkan metode yang inovatif untuk analisis teks pada skala besar.
Copyrights © 2024