Indonesian Journal of Data and Science
Vol. 4 No. 3 (2023): Indonesian Journal of Data and Science

Comparison of Machine Learning Land Use-Land Cover Supervised Classifiers Performance on Satellite Imagery Sentinel 2 using Lazy Predict Library

Muhamad Iqbal Januadi Putra (Unknown)
Vincent Alexander (Unknown)



Article Info

Publish Date
31 Dec 2023

Abstract

The utilisation of various supervised classifier algorithms in classifying land use and land cover (LULC) from satellite imagery has been widely used worldwide, yet the implementation using lazy predict library remained unexplored. This study aims to create the LULC supervised classifier model for Sentinel 2 satellite images using lazy predict library and assess its capability for creating multiple machine learning models. The result of this study shows that lazy predict library can generate 26 machine learning models in efficient few lines of code and less time-consuming. Most LULC models generated by lazy predicts has performance metrics above 90% with time computation between 0 and 1 seconds. While lazy predict library has benefits to generate various machine learning models at once, it has drawbacks in terms of its feasibility for the machine learning production, its obstacle running in local environment, and its requirements for the RAM computation.

Copyrights © 2023






Journal Info

Abbrev

ijodas

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

IJODAS provides online media to publish scientific articles from research in the field of Data Science, Data Mining, Data Communication, Data Security and Data ...