Indonesian Journal of Data and Science
Vol. 5 No. 1 (2024): Indonesian Journal of Data and Science

Advancements in Agricultural Automation: SVM Classifier with Hu Moments for Vegetable Identification

Waluyo Poetro, Bagus Satrio (Unknown)
Maria, ⁠⁠Eny (Unknown)
Zein, Hamada (Unknown)
Najwaini, Effan (Unknown)
Zulfikar, Dian Hafidh (Unknown)



Article Info

Publish Date
31 Mar 2024

Abstract

This study investigates the application of Support Vector Machine (SVM) classifiers in conjunction with Hu Moments for the purpose of classifying segmented images of vegetables, specifically Broccoli, Cabbage, and Cauliflower. Utilizing a dataset comprising segmented vegetable images, this research employs the Canny method for image segmentation and Hu Moments for feature extraction to prepare the data for classification. Through the implementation of a 5-fold cross-validation technique, the performance of the SVM classifier was thoroughly evaluated, revealing moderate accuracy, precision, recall, and F1-scores across all folds. The findings highlight the classifier's potential in distinguishing between different vegetable types, albeit with identified areas for improvement. This research contributes to the growing field of agricultural automation by demonstrating the feasibility of using SVM classifiers and image processing techniques for the task of vegetable identification. The moderate performance metrics emphasize the need for further optimization in feature extraction and classifier tuning to enhance classification accuracy. Future recommendations include exploring alternative machine learning algorithms, advanced feature extraction methods, and expanding the dataset to improve the classifier's robustness and applicability in agricultural settings. This study lays a foundation for future advancements in automated vegetable sorting and quality control, offering insights that could lead to more efficient agricultural practices.

Copyrights © 2024






Journal Info

Abbrev

ijodas

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

IJODAS provides online media to publish scientific articles from research in the field of Data Science, Data Mining, Data Communication, Data Security and Data ...