Journal of Mechanical Engineering Science and Technology
Vol 7, No 2 (2023)

Mechanical Characterization of NaOH-Treated Agel Fiber-Cotton Composites

Santhiarsa, IGN Nitya (Unknown)
Kusuma, I Gusti Bagus Wijaya (Unknown)
Negara, I Gede Artha (Unknown)



Article Info

Publish Date
31 Jul 2023

Abstract

Composites comprising two or more distinct materials are fabricated to enhance the mechanical properties of the constituent materials. A common approach for generating composites is vacuum infusion. This technique enables the infusion of two materials utilizing a vacuum. In the field of composite science, textile composites have emerged as an important new development. Agel rope, derived from twisting agel fibers, exhibits inferior bending strength and elongation compared to ropes fabricated from synthetic fibers. Moreover, agel rope is susceptible to bacterial decay. This study aims to characterize the mechanical properties of textile composites comprising woven agel rope subjected to NaOH treatment. Specimens in the longitudinal (warp) shows maximal load bearing capacity, as determined by experimental results. Samples treated with 5% NaOH tolerated peak loads of 51.12 N prior to failure, with an associated deflection of 3.18%. Specimens in the transverse (weft) of the woven cotton demonstrated maximum load of 40.75 N at 0.9% deflection. The maximum stress was 25.67 MPa. Similar to agel rope, NaOH treatment removes adhering contaminants from cotton fibers, thereby enhancing their strength. However, NaOH concentrations exceeding 7.5% extract cellulose, damaging the fiber ultrastructure.

Copyrights © 2023






Journal Info

Abbrev

jmest

Publisher

Subject

Energy Engineering Industrial & Manufacturing Engineering Materials Science & Nanotechnology Mechanical Engineering

Description

Journal of Mechanical Engineering Science and Technology (JMEST) is a peer reviewed, open access journal that publishes original research articles and review articles in all areas of Mechanical Engineering and Basic ...