PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL)
Vol. 12 (2024): PROSIDING SEMINAR NASIONAL FISIKA (E-JOURNAL) SNF2023

DETEKSI OBJEK BAYANGAN KENDARAAN MENGGUNAKAN FASTER R-CNN

Nabila, Deeva (Unknown)
Iswanto, Bambang Heru (Unknown)
Risnandar, Risnandar (Unknown)



Article Info

Publish Date
31 Jan 2024

Abstract

Abstrak Objek bayangan memiliki intensitas dan bentuk yang beragam, yang dapat menimbulkan masalah dalam sistem visi kendaraan otonom. Bayangan yang ditimbulkan dari pohon, bangunan, dan objek lain di sekitar jalan dapat mempengaruhi kinerja sistem pengenalan dan pelacakan target. Maka itu, diperlukan suatu model pendeteksian bayangan untuk mengetahui lokasi bayangan agar dapat digunakan pada penelitian terkat eliminasi bayangan. Penelitian ini bertujuan untuk mengetahui tingkat akurasi model dengan variasi dataset yang kami berikan dan mendefinisikan masing-masing label objek non-shadow dan shadow merupakan metode yang digunakan untuk membedakan antara bayangan dan objeknya yang mirip. Pelatihan model dilakukan dengan fine-tuning Faster R-CNN pada kerangka kerja Pytorch menggunakan arsitektur ResNet50 sebagai rancangan dasar. Implementasi model untuk dapat mendeteksi bayangan diterapkan pada video perjalanan kendaraan otonom. Hasil penelitian menunjukkan bahwa dari kelima model yang dibuat, model P5 berhasil mendeteksi bayangan dengan rata-rata akurasi F1-score sebesar 46%. Kata-kata kunci: Bayangan, Deteksi, Faster R-CNN, R-CNN, ResNet50, Pytorch Abstract Shadow objects exhibit varying intensities and shapes, which can pose problems in autonomous vehicle vision systems. Shadows generated by trees, buildings, and other objects in the vicinity of the road can impact the performance of the recognition and tracking system. Thus, a shadow detection model is necessary to determine the location of shadows, which can be employed in studies related to shadow removal. This study aims to determine the accuracy level of the model with our given diverse dataset and defining distinct labels for non-shadow and shadow objects to differentiate between shadows and similar-looking objects. The model training was performed by fine-tuning Faster R-CNN on the PyTorch framework, utilizing ResNet50 as the backbone architecture. The implemented model aimed to detect shadows in videos of autonomous vehicle. The results indicated that out of the five models developed, P5 model successfully detected shadows with an average accuracy based on F1-score is 0.46%. Keywords: Shadow, Detection, Faster R-CNN, Faster R-CNN, R-CNN, ResNet50, Pytorch

Copyrights © 2024






Journal Info

Abbrev

prosidingsnf

Publisher

Subject

Electrical & Electronics Engineering Energy Physics Other

Description

Focus and Scope: Physics education Physics Instrumentation and Computation Material Physics Medical Physics and Biophysics Physics of Earth and Space Physics Theory, Particle, and Nuclear Environmental Physics and Renewable ...