International Journal of Electrical and Computer Engineering
Vol 14, No 3: June 2024

Analyzing electroencephalograph signals for early Alzheimer’s disease detection: deep learning vs. traditional machine learning approaches

Elgandelwar, Sachin M. (Unknown)
Bairagi, Vinayak (Unknown)
S. Vasekar, Shridevi (Unknown)
Nanthaamornphong, Aziz (Unknown)
Tupe-Waghmare, Priyanka (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

Alzheimer’s disease (AD) stands as a progressive neurodegenerative disorder with a significant global public health impact. It is imperative to establish early and accurate diagnoses of AD to facilitate effective interventions and treatments. Recent years have witnessed the emergence of machine learning (ML) and deep learning (DL) techniques, displaying promise in various medical domains, including AD diagnosis. This study undertakes a comprehensive contrast between conventional machine learning methods and advanced deep learning strategies for early AD diagnosis. Conventional ML algorithms like support vector machines, decision trees, and K nearest neighbor have been extensively employed for AD diagnosis through relevant feature extraction from heterogeneous data sources. Conversely, deep learning techniques such as multilayer perceptron (MLP) and convolutional neural networks (CNNs) have demonstrated exceptional aptitude in autonomously uncovering intricate patterns and representations from unprocessed data like EEG data. The findings reveal that while traditional ML methods may perform adequately with limited data, deep learning techniques excel when ample data is available, showcasing their potential for early and precise AD diagnosis. In conclusion, this research paper contributes to the ongoing discourse surrounding the choice of appropriate methodologies for early Alzheimer’s disease diagnosis.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...