International Journal of Electrical and Computer Engineering
Vol 14, No 3: June 2024

Intelligent intrusion detection through deep autoencoder and stacked long short-term memory

Moukhafi, Mehdi (Unknown)
Tantaoui, Mouad (Unknown)
Chana, Idriss (Unknown)
Bouazi, Aziz (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

In the realm of network intrusion detection, the escalating complexity and diversity of cyber threats necessitate innovative approaches to enhance detection accuracy. This study introduces an integrated solution leveraging deep learning techniques for improved intrusion detection. The proposed framework consists on a deep autoencoder for feature extraction, and a stacked long short-term memory (LSTM) network ensemble for classification. The deep autoencoder compresses raw network data, extracting salient features and mitigating noise. Subsequently, the stacked LSTM ensemble captures intricate temporal dependencies, correcting anomaly detection precision. Experiments conducted on the UNSW-NB15 dataset, and a benchmark in intrusion detection validate the effectiveness of the approach. The solution achieves an accuracy of 90.59%, with precision, recall, and F1-Score metrics reaching 90.65, 90.59, and 90.57, respectively. Notably, the framework outperforms standalone models and demonstrates the advantage of synergizing deep autoencoder-driven feature extraction with the stacked LSTM ensemble. Furthermore, a binary classification experiment attains an accuracy of about 90.59%, surpassing the multiclass classification and affirming the model's potential for binary threat identification. Comparative analyses highlight the pivotal role of feature extraction, while experimentation illustrates the enhancement achieved by incorporating the synergistic deep autoencoder-Stacked LSTM approach.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...