International Journal of Electrical and Computer Engineering
Vol 14, No 2: April 2024

Control energy management system for photovoltaic with bidirectional converter using deep neural network

Widjonarko, Widjonarko (Unknown)
Utomo, Wahyu Mulyo (Unknown)
Omar, Saodah (Unknown)
Baskara, Fatah Ridha (Unknown)
Rosyadi, Marwan (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

Rapid population growth propels technological advancement, heightening electricity demand. Obsolete fossil fuel-based power facilities necessitate alternative energy sources. Photovoltaic (PV) energy relies on weather conditions, posing challenges for constant energy consumption. This hybrid energy source system (HESS) prototype employs extreme learning machine (ELM) power management to oversee PV, fossil fuel, and battery sources. ELM optimally selects power sources, adapting to varying conditions. A bidirectional converter (BDC) efficiently manages battery charging, discharging, and secondary power distribution. HESS ensures continuous load supply and swift response for system reliability. The optimal HESS design incorporates a single renewable source (PV), conventional energy (PNL and genset), and energy storage (battery). Supported by a BDC with over 80% efficiency in buck and boost modes, it stabilizes voltage and supplies power through flawless ELM-free logic verification. Google Colab online testing and hardware implementation with Arduino demonstrate ELM's reliability, maintaining a direct current (DC) 24 V interface voltage and ensuring its applicability for optimal HESS.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...