International Journal of Electrical and Computer Engineering
Vol 14, No 1: February 2024

Multi-task learning using non-linear autoregressive models and recurrent neural networks for tide level forecasting

Nikentari, Nerfita (Unknown)
Wei, Hua-Liang (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Tide level forecasting plays an important role in environmental management and development. Current tide level forecasting methods are usually implemented for solving single task problems, that is, a model built based on the tide level data at an individual location is only used to forecast tide level of the same location but is not used for tide forecasting at another location. This study proposes a new method for tide level prediction at multiple locations simultaneously. The method combines nonlinear autoregressive moving average with exogenous inputs (NARMAX) model and recurrent neural networks (RNNs), and incorporates them into a multi-task learning (MTL) framework. Experiments are designed and performed to compare single task learning (STL) and MTL with and without using non-linear autoregressive models. Three different RNN variants, namely, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are employed together with non-linear autoregressive models. A case study on tide level forecasting at many different geographical locations (5 to 11 locations) is conducted. Experimental results demonstrate that the proposed architectures outperform the classical single-task prediction methods.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...