International Journal of Electrical and Computer Engineering
Vol 14, No 3: June 2024

Expert system for diagnosing learning disorders in children

Andrade-Arenas, Laberiano (Unknown)
Yactayo-Arias, Cesar (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

Given the urgent need for early detection of learning disorders such as dysgraphia, dyslexia, and dyscalculia in children, this study aimed to evaluate an expert system developed in Python to facilitate early diagnosis of these disorders. The background highlights the importance of providing parents, educators, and health professionals with an effective tool for early detection of these disorders. In 21 simulated cases, the system showed impressive performance with an accuracy rate of 95%, a precision of 100%, a sensitivity of 93%, and a specificity of 100%. Furthermore, the acceptability evaluation, conducted with 15 parents selected by convenience sampling, showed a high level of satisfaction, with an overall mean of 4.78 and a standard deviation of 0.45, indicating consistency in responses. In conclusion, this study confirms the effectiveness of the expert system in the early diagnosis of learning disabilities, providing parents, educators, and health professionals with a valuable tool. Despite these encouraging results, the need for additional research is recognized to address limitations and improve the external validity of the system to ensure its widespread utility and adaptability in real clinical settings.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...