International Journal of Electrical and Computer Engineering
Vol 14, No 1: February 2024

Predicting automobile insurance fraud using classical and machine learning models

Shareh Nordin, Shareh-Zulhelmi (Unknown)
Wah, Yap Bee (Unknown)
Haur, Ng Kok (Unknown)
Hashim, Asmawi (Unknown)
Rambeli, Norimah (Unknown)
Jalil, Norasibah Abdul (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Insurance fraud claims have become a major problem in the insurance industry. Several investigations have been carried out to eliminate negative impacts on the insurance industry as this immoral act has caused the loss of billions of dollars. In this paper, a comparative study was carried out to assess the performance of various classification models, namely logistic regression, neural network (NN), support vector machine (SVM), tree augmented naïve Bayes (NB), decision tree (DT), random forest (RF) and AdaBoost with different model settings for predicting automobile insurance fraud claims. Results reveal that the tree augmented NB outperformed other models based on several performance metrics with accuracy (79.35%), sensitivity (44.70%), misclassification rate (20.65%), area under curve (0.81) and Gini (0.62). In addition, the result shows that the AdaBoost algorithm can improve the classification performance of the decision tree. These findings are useful for insurance professionals to identify potential insurance fraud claim cases.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...