International Journal of Electrical and Computer Engineering
Vol 14, No 2: April 2024

Seizure stage detection of epileptic seizure using convolutional neural networks

Krori Dutta, Kusumika (Unknown)
Manohar, Premila (Unknown)
Krishnappa, Indira (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

According to the World Health Organization (WHO), seventy million individuals worldwide suffer from epilepsy, a neurological disorder. While electroencephalography (EEG) is crucial for diagnosing epilepsy and monitoring the brain activity of epilepsy patients, it requires a specialist to examine all EEG recordings to find epileptic behavior. This procedure needs an experienced doctor, and a precise epilepsy diagnosis is crucial for appropriate treatment. To identify epileptic seizures, this study employed a convolutional neural network (CNN) based on raw scalp EEG signals to discriminate between preictal, ictal, postictal, and interictal segments. The possibility of these characteristics is explored by examining how well time-domain signals work in the detection of epileptic signals using intracranial Freiburg Hospital (FH), scalp Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) databases, and Temple University Hospital (TUH) EEG. To test the viability of this approach, two types of experiments were carried out. Firstly, binary class classification (preictal, ictal, postictal each versus interictal) and four-class classification (interictal versus preictal versus ictal versus postictal). The average accuracy for stage detection using CHB-MIT database was 84.4%, while the Freiburg database's time-domain signals had an accuracy of 79.7% and the highest accuracy of 94.02% for classification in the TUH EEG database when comparing interictal stage to preictal stage.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...