International Journal of Electrical and Computer Engineering
Vol 14, No 4: August 2024

A two-stage approach for aircraft detection with convolutional neural network

Toghuj, Wael (Unknown)
Alraba'nah, Yousef (Unknown)



Article Info

Publish Date
01 Aug 2024

Abstract

Over the past few years, object detection has experienced remarkable advancements, primarily attributable to significant progress in deep learning architectures. Nonetheless, the task of identifying aircraft targets within remote sensing images remains a challenging and actively explored area. Presently, there are two main approaches employed for this task: one utilizing convolutional neural network (CNN) techniques and the other relying on conventional methods. In this work, a CNN based architecture is proposed to recognize aircraft types using remote sensing images. The experiments performed on multi-type aircraft remote sensing images (MTARSI) dataset show that the proposed architecture achieves 97.07%, 94.81%, and 94.44% accuracy rates for training, validation and testing sets. The results approve that, the architecture outperforms state of the art models.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...