International Journal of Electrical and Computer Engineering
Vol 14, No 5: October 2024

Performance analysis of breast cancer histopathology image classification using transfer learning models

Ramasamy, Meena Prakash (Unknown)
Subburaj, Thayammal (Unknown)
Krishnasamy, Valarmathi (Unknown)
Mannarsamy, Vimala (Unknown)



Article Info

Publish Date
01 Oct 2024

Abstract

Convolutional neural networks (CNN) which are deep learning-based methods are being currently successfully deployed and have gained much popularity in medical image analysis. CNN can handle enormous amounts of medical data which makes it possible for accurate detection and classification of breast cancer from histopathological images. In the proposed method, we have implemented transfer learning-based classification of breast cancer histopathological images using DenseNet121, DenseNet201, VGG16, VGG19, InceptionV3, and MobileNetV2 and made a performance analysis of the different models on the publicly available dataset of BreakHis. These networks were pre-trained on the ImageNet database and initialized with weights which are fine-tuned by training with input histopathological images. These models are trained with images of the BreakHis dataset with multiple image magnifications. From the comparative study of these pre-trained models on histopathology images, it is inferred that DenseNet121 achieves the highest breast cancer classification accuracy of 0.965 compared to other models and contemporary methods.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...