International Journal of Electrical and Computer Engineering
Vol 14, No 2: April 2024

A deep learning framework for accurate diagnosis of colorectal cancer using histological images

Attia, Maria M. (Unknown)
F. Areed, Nihal Fayez (Unknown)
Amer, Hanan M. (Unknown)
El-Seddek, Mervat (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with high mortality and incidence rates. Early detection of the disease may increase the probability of survival, making it critical to develop effective procedures for precise treatment. In the past few years, there has been an increased use of deep learning techniques in image classification that aid in the detection of various types of cancer. In this study, convolutional neural network (CNN) models were used to classify colorectal cancer into benign and malignant. After applying various data preprocessing techniques to the image dataset, we evaluated our prototypes using three distinct subsets of testing data, representing 20%, 30%, and 40% of the total dataset. Additionally, four pre-trained CNN models (ResNet-18, ResNet-50, GoogLeNet, and MobileNetV2) were trained, and the network architectural techniques were compared by applying the Adam optimizer. Finally, we assessed the performance of algorithms in terms of accuracy, sensitivity, specificity, precision, F1-score, and area under the receiver operating characteristic (ROC) curve (AUC). In this research, deep learning approaches demonstrated high efficacy in accurately diagnosing colorectal cancer. This indicates that these techniques have an important and significant value for advancing medical research.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...