International Journal of Electrical and Computer Engineering
Vol 14, No 3: June 2024

Prediction of paroxysmal atrial fibrillation using a convolutional neural network and electrocardiogram signals

Castro, Henry (Unknown)
Garcia-Racines, Juan David (Unknown)
Bernal-Norena, Alvaro (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

Atrial fibrillation (AF) is the most clinically diagnosed arrhythmia in cardiac pathology. The incidence of AF begins at a very early age and its initial state is paroxysmal atrial fibrillation (PAF). This type of heart disease can be detected and predicted by analyzing the spectrogram of a surface electrocardiogram (ECG) signal. In many studies, different ECG signal formats and convolutional neural network (CNN) architectures have been used. However, the lack of good signal preprocessing or signal adequacy may have affected the accuracy, especially on short-term ECG signals. In this study, we analyzed a preprocessed ECG signal, determined the optimal set to predict PAF, and evaluated the accuracy using ECG signals of different durations. The PAF Prediction Challenge–PhysioNet database was used to extract spectrograms in 30-sec and 5-sec windows for two classes (Normal, PAF) and 3 classes (Normal, Close-AF, Distant-AF). Then, the AlexNet architecture was used. The proposed method achieved a two-class accuracy of 99.92% with a 30-sec window and 99.42% with a 5-sec window, improving the PAF prediction performance compared with similar works. In addition, the three-class accuracies were 96.92% and 97.43% with windows of 30-sec, and 5-sec, respectively. These results prove the efficacy of the method for the early diagnosis of PAF, even based on short-term ECG signals.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...