International Journal of Electrical and Computer Engineering
Vol 14, No 2: April 2024

An efficient convolutional neural network-extreme gradient boosting hybrid deep learning model for disease detection applications

Bhaskar, Navaneeth (Unknown)
Ajithkumar, Aswathy Maruthompilli (Unknown)
Tupe-Waghmare, Priyanka (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

In this paper, we present an efficient deep-learning hybrid model comprising an extreme gradient boosting (XGBoost) supervised learning algorithm and convolutional neural networks (CNN) for the automated detection of diseases. The proposed model is implemented and tested to detect type-2 diabetes by measuring the acetone concentration in the exhaled breath. Acetone will be present in much higher concentrations in type-2 diabetic patients compared to non-diabetic people. A novel sensing module is designed and implemented in our study to measure the acetone concentration in exhaled breath. The proposed approach delivered good results, with a classification accuracy of 97.14%. The findings of this study show how effectively the proposed detection module functions in disease diagnosis applications. As the detection process is simple and non-invasive, people can undergo routine checks for diabetes with the proposed detection module.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...