International Journal of Electrical and Computer Engineering
Vol 14, No 1: February 2024

Experimental analysis of intrusion detection systems using machine learning algorithms and artificial neural networks

Abdulkareem, Ademola (Unknown)
Somefun, Tobiloba Emmanuel (Unknown)
Mutalub, Adesina Lambe (Unknown)
Adeyinka, Adewale (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Since the invention of the internet for military and academic research purposes, it has evolved to meet the demands of the increasing number of users on the network, who have their scope beyond military and academics. As the scope of the network expanded maintaining its security became a matter of increasing importance. With various users and interconnections of more diversified networks, the internet needs to be maintained as securely as possible for the transmission of sensitive information to be one hundred per cent safe; several anomalies may intrude on private networks. Several research works have been released around network security and this research seeks to add to the already existing body of knowledge by expounding on these attacks, proffering efficient measures to detect network intrusions, and introducing an ensemble classifier: a combination of 3 different machine learning algorithms. An ensemble classifier is used for detecting remote to local (R2L) attacks, which showed the lowest level of accuracy when the network dataset is tested using single machine learning models but the ensemble classifier gives an overall efficiency of 99.8%.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...