International Journal of Electrical and Computer Engineering
Vol 14, No 4: August 2024

Personalized diabetes diagnosis using machine learning and electronic health records

S., Gowthami (Unknown)
Reddy, R. Venkata Siva (Unknown)
Ahmed, Mohammed Riyaz (Unknown)



Article Info

Publish Date
01 Aug 2024

Abstract

Diabetes mellitus (DM) poses a significant health challenge globally, necessitating accurate and timely diagnosis for effective management. Conventional diagnostic methods often struggle to address the multifaceted nature of diabetes and the requisite lifestyle adjustments. In this study, we propose a data-driven approach utilizing machine learning techniques to enhance diabetes diagnosis. By leveraging extensive patient attributes and medical records, machine learning algorithms can uncover intricate patterns and correlations. Our methodology, validated on the PIMA India dataset, demonstrates promising results. The random forest model achieved the highest accuracy of 87%, followed closely by gradient boost at 90%. Notably, XGBoost and CATBoost models attained a peak accuracy of 90.9%. These findings underscore the potential of machine learning in transforming diabetes diagnosis. Beyond improving diagnostic accuracy, our approach aims to guide individuals towards healthier lifestyles. Intelligent systems driven by machine learning hold promise for revolutionizing diabetes management, ultimately leading to better patient outcomes and more effective health care delivery.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...