In this paper, the cascade architecture of spline adaptive filtering (CSAF) for nonlinear systems is presented with the normalized version of orthogonal gradient adaptive (NOGA) algorithm. Spline adaptive filtering comprises a sandwich of the first linear adaptive filtering (LAF) and nonlinear adaptive look-up table. In this cascading architecture, SAF is connected to the second LAF. NOGA is considered as the fast convergence applied by stochastic gradient-based approach. Convergence properties of the proposed NOGA-CSAF algorithm in terms of instantaneous errors can be derived by using Taylor series expansion. Experimental results demonstrate the effectiveness of proposed NOGA-CSAF algorithm using the mean square error scheme. It clearly outperforms the traditional least mean square algorithm on CSAF model in the nonlinear identification system.
Copyrights © 2024