International Journal of Electrical and Computer Engineering
Vol 14, No 2: April 2024

Improving cyberbullying detection through multi-level machine learning

Salsabila, Salsabila (Unknown)
Sarno, Riyanarto (Unknown)
Ghozali, Imam (Unknown)
Sungkono, Kelly Rossa (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

Cyberbullying is a known risk factor for mental health issues, demanding immediate attention. This study aims to detect cyberbullying on social media in alignment with the third sustainable development goal (SDG) for health and well-being. Many previous studies employ single-level classification, but this research introduces a multi-class multi-level (MCML) algorithm for a more detailed approach. The MCML approach incorporates two levels of classification: level one for cyberbullying or not cyberbullying, and level two for classifying cyberbullying by type. This study used a dataset of 47,000 tweets from Twitter with six class labels and employed an 80:20 training and testing data split. By integrating bidirectional encoder representations from transformers (BERT) and MCML at level two, we achieved a remarkable 99% accuracy, surpassing BERT-based single-level classification at 94%. In conclusion, the combination of MCML and BERT offers enhanced cyberbullying classification accuracy, contributing to the broader goal of promoting mental health and well-being.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...