International Journal of Electrical and Computer Engineering
Vol 14, No 1: February 2024

Accuracy study of image classification for reverse vending machine waste segregation using convolutional neural network

Hor Yan, Tan (Unknown)
Mohd Azam, Sazuan Nazrah (Unknown)
Md. Sani, Zamani (Unknown)
Azizan, Azizul (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

This study aims to create a sorting system with high accuracy that can classify various beverage containers based on types and separate them accordingly. This reverse vending machine (RVM) provides an image classification method and allows for recycling three types of beverage containers: drink carton boxes, polyethylene terephthalate (PET) bottles, and aluminium cans. The image classification method used in this project is transfer learning with convolutional neural networks (CNN). AlexNet, GoogLeNet, DenseNet201, InceptionResNetV2, InceptionV3, MobileNetV2, XceptionNet, ShuffleNet, ResNet 18, ResNet 50, and ResNet 101 are the neural networks that used in this project. This project will compare the F1-score and computational time among the eleven networks. The F1-score and computational time of image classification differs for each neural network. In this project, the AlexNet network gave the best F1-score, 97.50% with the shortest computational time, 2229.235 s among the eleven neural networks.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...