IAES International Journal of Robotics and Automation (IJRA)
Vol 13, No 4: December 2024

A holistic approach of stability using material parameters of manipulators

Mustary, Shabnom (Unknown)
Kashem, Mohammod Abul (Unknown)
Chowdhury, Mohammad Asaduzzaman (Unknown)
Uddin, Jia (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

The demand for a comprehensive method to assess stability using manipulator material parameters is high. Various material parameters, such as the Young modulus, which represents stiffness, damping, and deflection, influence the material of the robot manipulator. The correlation between robot stability and these characteristics remains unclear, as prior studies have not yet examined the collective impact of these parameters on robot manipulators. This work considers two sophisticated manipulators, namely ABB and FANUC. The main objective of this research is to construct a stability model that considers the material properties of stiffness, damping, and deflection to assess the manipulator’s stability level, which may be categorized as low, medium, or high. Furthermore, the presented stability model examines and employs numerous modified and conventional formulas for material properties to determine the level of stability. The findings show that stiffness significantly influences the stability of robot manipulators, a relationship that applies to all the examined manipulators. We also emphasize that the choice of manipulator materials significantly impacts stability maintenance. These findings are expected to enhance the design and advancement of novel robot manipulators within the industry.

Copyrights © 2024






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...