IAES International Journal of Robotics and Automation (IJRA)
Vol 13, No 3: September 2024

The color features and k-nearest neighbor algorithm for classifying betel leaf image

Hamdani, Hamdani (Unknown)
Septiarini, Anindita (Unknown)
Puspitasari, Novianti (Unknown)
Tejawati, Andi (Unknown)
Alameka, Faza (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Piper betle L. (betel) is a species that belongs to the genus Piper and is a type of medicinal plant that is quite well known to the general population. The varieties of the leaf color may distinguish are red, green, and black betel. However, consumers still need assistance determining the differences between the many types of betel leaf. Therefore, using image processing techniques, this research contributes to building a classification method for distinguishing betel leaves based on color attributes. This approach anoints for the region of interest detection, feature extraction, and classification. In addition, three different classifiers, naïve Bayes, support vector machine, and k-nearest neighbors (k-NN), were used during the classification process. The evaluation for this study used a percentage split to divide a total of 180 images between the training and testing phases. The method’s performance provided the highest accuracy value possible, 100%, by utilizing the color characteristics with the k-NN classifier.

Copyrights © 2024






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...