Physics Communication
Vol 8, No 1 (2024): February 2024

Optimizing Atmospheric Ion Harvesting Electrodes with Graphene for Clean Energy Generation Based on Capacitive Properties and Energy Storage

Rahiemy, Ghitha Nadhira Azka (Unknown)
Irham, Zulfikar (Unknown)
Gumilang, Yuma Estu (Unknown)
El-Syifa, Avisena Kemal (Unknown)
Yunita, Duta Norma (Unknown)
Sulistyani, Eko Tri (Unknown)



Article Info

Publish Date
28 Feb 2024

Abstract

The atmosphere is rich in positive ions, rendering it electrically more positive than the Earth's surface. This characteristic presents the atmosphere as a potential source of renewable energy through ion harvesting. This study harnesses the electrical properties by optimizing ion harvesting electrodes using pristine graphene and graphene-Au thin films to generate clean electricity. Research methods included Raman Spectroscopy and Cyclic Voltammetry (CV) to assess the surface characteristics and capacitance of the graphene samples, along with laboratory-scale ion harvesting simulations to evaluate the energy data produced in the ion harvesting process. The samples used in this study were identified as bilayer graphene, as confirmed by Raman Spectroscopy. CV testing yielded capacitance values of 0.40288 F for pristine graphene and 0.44879 F for graphene-Au samples. According to ion harvesting simulations, graphene-Au generated approximately 6.8 times more energy than pristine graphene and five times more energy than copper alone. The respective energy outputs for graphene-Au, pristine graphene, and pure copper were 1.376 mW, 1.157 mW, and 0.374 mW. These results demonstrate that adding a graphene layer to the atmospheric ion-harvesting electrode can optimize the electricity generation process.

Copyrights © 2024






Journal Info

Abbrev

pc

Publisher

Subject

Physics

Description

Physics Communication is devoted to reporting important new developments in the area of physics. Papers cover the fields of: atomic and molecular physics condensed matter and theory of statistical physics nuclear theory fluid theory and plasmas elementary particle physics and quantum field theory ...