IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

Thai COVID-19 patient clustering for monitoring and prevention: data mining techniques

Pansayta, Sawitree (Unknown)
Chansanam, Wirapong (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

This research aims to optimize emerging infectious disease monitoring techniques in Thailand, which will be extremely valuable to the government, doctors, police, and others involved in understanding the seriousness of the spread of novel coronavirus to improve government policies, decisions, medical facilities, treatment. The data mining techniques included cluster analysis using K-means clustering. The infection data were obtained from the open data of the digital government development agency, Thailand. The dataset consisted of 1,893,941 cumulative cases from January 2020 to October 2021 of the outbreak. The results from clustering consisted of 8 groups. Clustering results determined the three largest, three medium-sized, and the two most minor numbers of infected people, respectively. These clusters represent their activities, namely touching an infected person and checking themselves. The components of emerging diseases in Thailand are closely related to waves, gender, age, nationality, career, behavioral risk, and region. The province of onset was mainly in Bangkok and its vicinity or central Thailand, as well as industrial areas. Adult workers aged 19 to 27 years and 43 to 54 years or over were seeds of new infection sources.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...