IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

Multi-channel microseismic signals classification with convolutional neural networks

Shu, Hongmei (Unknown)
Dawod, Ahmad Yahya (Unknown)
Tepsan, Worawit (Unknown)
Mou, Lei (Unknown)
Tang, Zheng (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

Identifying and classifying microseismic signals is essential to warn of mines’ dangers. Deep learning has replaced traditional methods, but labor-intensive manual identification and varying deep learning outcomes pose challenges. This paper proposes a transfer learning-based convolutional neural network (CNN) method called microseismic signals-convolutional neural network (MS-CNN) to automatically recognize and classify microseismic events and blasts. The model was instructed on a limited sample of data to obtain an optimal weight model for microseismic waveform recognition and classification. A comparative analysis was performed with an existing CNN model and classical image classification models such as AlexNet, GoogLeNet, and ResNet50. The outcomes demonstrate that the MS-CNN model achieved the best recognition and classification effect (99.6% accuracy) in the shortest time (0.31 s to identify 277 images in the test set). Thus, the MS-CNN model can efficiently recognize and classify microseismic events and blasts in practical engineering applications, improving the recognition timeliness of microseismic signals and further enhancing the accuracy of event classification.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...