IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

Parallel multivariate deep learning models for time-series prediction: A comparative analysis in Asian stock markets

Widiputra, Harya (Unknown)
Juwono, Edhi (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

This study investigates deep learning models for financial data prediction and examines whether the architecture of a deep learning model and time-series data properties affect prediction accuracy. Comparing the performance of convolutional neural network (CNN), long short-term memory (LSTM), Stacked-LSTM, CNN-LSTM, and convolutional LSTM (ConvLSTM) when used as a prediction approach to a collection of financial time-series data is the main methodology of this study. In this instance, only those deep learning architectures that can predict multivariate time-series data sets in parallel are considered. This research uses the daily movements of 4 (four) Asian stock market indices from 1 January 2020 to 31 December 2020. Using data from the early phase of the spread of the Covid-19 pandemic that has created worldwide economic turmoil is intended to validate the performance of the analyzed deep learning models. Experiment results and analytical findings indicate that there is no superior deep learning model that consistently makes the most accurate predictions for all states' financial data. In addition, a single deep learning model tends to provide more accurate predictions for more stable time-series data, but the hybrid model is preferred for more chaotic time-series data.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...