IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

You only look once model-based object identification in computer vision

Reddy, Shiva Shankar (Unknown)
Maheswara Rao, Venkata Rama (Unknown)
Voosala, Priyadarshini (Unknown)
Nrusimhadri, Silpa (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

You only look once version 4 (YOLOv4) is a deep-learning object detection algorithm. It is used to decrease parameters and simplify network structures, making it suited for mobile and embedded device development. The YOLO detector can foresee an object's Class, bounding box, and probability of that Object's Class being found inside that bounding box. A probability value for each bounding box represents the likelihood of a given item class in that bounding box. Global features, channel attention, and special attention are also applied to extract more compelling information. Finally, the model combines the auxiliary and backbone networks to create the YOLOv4's entire network topology. Using custom functions developed upon YOLOv4, we get the count of the objects and a crop around the objects detected with a confidence score that specifies the probability of the thing seen being the same Class as predicted by YOLOv4. A confidence threshold is implemented to eliminate the detections with low confidence. 

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...