IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

Enhancing machine failure prediction with a hybrid model approach

Khattach, Ouiam (Unknown)
Moussaoui, Omar (Unknown)
Hassine, Mohammed (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

The industrial sector is undergoing a substantial transformation by embracing predictive maintenance approaches, aiming to minimize downtime and reduce operational expenses. This transformative shift involves the incorporation of machine learning techniques to refine the accuracy of predicting machinery failures. In this article, we delve into an in-depth exploration of machine failure prediction, employing a hybrid model amalgamating long short-term memory (LSTM) and support vector machine (SVM). Our comprehensive study meticulously assesses the hybrid model’s performance, comparing it with standalone LSTM and SVM models across three distinct datasets. The results showcase that the hybrid model outperformed, providing the modest dependable, and highest F1-score values in our evaluation.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...