IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

Smart agriculture model in detecting oil palm plantation diseases using a convolution neural network

Gunawan, Gunawan (Unknown)
Zarlis, Muhammad (Unknown)
Sihombing, Poltak (Unknown)
Sutarman, Sutarman (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Planning models for sustainable crop care in the context of smart agriculture are complex issues as they involve many factors such as productivity, quality, growth sustainability, workforce use, and information technology use. In this study, we will create an optimized model using a convolution neural network (CNN) that can classify and monitor plant diseases. Part of the plant care system is to be aware of plant diseases and to be able to deal with them immediately. This study aims to acquire a new smart farming model for integrated crop care. The results of this research are findings in the form of a CNN model for classifying plant diseases detected from the leaves of the plants studied in oil palm. Testing using Google Colab obtains 100% accuracy and 99% accuracy using a teachable machine. The contributions of this paper create a new model in the field of informatics, especially in the field of intelligent agriculture based on information technology.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...