IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 2: June 2024

Design of smoke detection system using deep learning and sensor fusion with recursive feature elimination cross-validation

Julian, James (Unknown)
Bagas Dewantara, Annastya (Unknown)
Wahyuni, Fitri (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

The fire safety system is an important component that controls material and immaterial losses. Fire disasters are generally indicated by the appearance of excess smoke and changes in temperature, pressure, and changes in other parameters in the environment. Conventional smoke sensors are limited in reading parameter changes around their environment, making them less effective in early fire detection. This study aims to design a smoke detection system as an early fire detection system, using sensor fusion based on deep learning using the recursive feature elimination method with cross-validation (RFECV) using a random forest classifier used to select optimal parameters from public datasets as the basis for determining the sensor to be used. Based on the RFECV optimal feature, a deep learning algorithm was performed and obtained an accuracy of 0.99, a precision of 0.99, a recall of 1.00, and an F1 score of 0.99, with a latency time of 34.02 μs, which is 71.76% times faster than the original model.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...