IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 2: June 2024

Financial technology forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior

Al-Khowarizmi, Al-Khowarizmi (Unknown)
Watts, Michael J. (Unknown)
Efendi, Syahril (Unknown)
Abdulbasah Kamil, Anton (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

Financial technology (FinTech) which is included in the development of digitalization in the financial sector in the industrial era 4.0. FinTech can make any transactions anywhere with the pillars of peer-to-peer (P2P) lending, merchants, and crowdfunding. In the P2P lending pillar, there are borrowers and lenders who are digitized in FinTech devices. FinTech in Indonesia is controlled by a state agency called the financial services authority or otoritas jasa keuangan (OJK). In the movement of P2P lending, there are borrowers and lenders who can be said to be investors where these activities are reported to the OJK. This data can be forecasted using a neural network approach such as evolving connectionist system (ECoS), which is a method capable of forecasting with learning that develops in the hidden layer. In this research article, we present results on forecasting borrowers with a mean absolute percentage error (MAPE) of 0.148% and forecasting lenders with an accuracy measurement with MAPE of 0.209% with a learning rate 1=0.6 and a learning rate 2=0.3. So, this forecasting model can be said as an optimization in FinTech activities on the behavior of borrowers and lenders.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...