IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

Partial half fine-tuning for object detection with unmanned aerial vehicles

Pebrianto, Wahyu (Unknown)
Mudjirahardjo, Panca (Unknown)
Pramono, Sholeh Hadi (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

Deep learning has shown outstanding performance in object detection tasks with unmanned aerial vehicles (UAVs), which involve the fine-tuning technique to improve performance by transferring features from pre-trained models to specific tasks. However, despite the immense popularity of fine-tuning, no works focused on to study of the precise fine-tuning effects of object detection tasks with UAVs. In this research, we conduct an experimental analysis of each existing fine-tuning strategy to answer which is the best procedure for transferring features with fine-tuning techniques. We also proposed a partial half fine-tuning strategy which we divided into two techniques: first half fine-tuning (First half F-T) and final half fine-tuning (Final half F-T). We use the VisDrone dataset for the training and validation process. Here we show that the partial half fine-tuning: Final half F-T can outperform other fine-tuning techniques and are also better than one of the state-of-the-art methods by a difference of 19.7% from the best results of previous studies.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...