IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 1: March 2024

Implementation of deep neural networks learning on unmanned aerial vehicle based remote-sensing

Ahmed, Shouket Abdulrahman (Unknown)
Desa, Hazry (Unknown)
T. Hussain, Abadal-Salam (Unknown)
A. Taha, Taha (Unknown)



Article Info

Publish Date
01 Mar 2024

Abstract

Due to efficient and adaptable data collecting, unmanned aerial vehicle (UAV) has been a popular topic in computer vision (CV) and remote sensing (RS) in recent years. Inspiring by the recent success of deep learning (DL), several enhanced object identification and tracking methods have been broadly applied to a variety of UAV-related applications, including environmental monitoring, precision agriculture, and traffic management. In this research, we present efficient neural network (ENet), a unique deep neural network architecture designed exclusively for jobs demanding low latency operation. ENet is up to quicker, takes fewer floating-point operations per second (FLOPs), has fewer parameters, and offers accuracy comparable to or superior to that of previous models. We have tested it on the street and cityscapes reports on comparisons with current state-of-the-art approaches and the tradeoffs between a network's processing speed and accuracy. We give measurements of the proposed architecture's performance on embedded devices and offer software enhancements that might make ENet even quicker.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...