IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

Deep neural networks and conventional machine learning classifiers to analyze thoracic survival data

Ika Agustyaningrum, Cucu (Unknown)
Ramdhani, Yudi (Unknown)
Purnama Alamsyah, Doni (Unknown)
B. Hariyanto, Oda I. (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Lung cancer is a prevalent global health concern and most prevalent malignancy in Indonesian hospitals. Following thoracic surgery, patients were categorized into two classes: individuals who experienced mortality within a year and those who achieved survival. Despite being about socks, the dataset for the deceased category consisted of 70 data samples, while the dataset for the final group comprised 400 samples. Data calculation involves the utilization of both deep neural networks and standard machine learning algorithms. The study use the Python programming language to evaluate the algorithms, and it measures their performance using metrics such as accuracy, F1-Score, precision, recall, receiver operating characteristic (ROC), and area under curve (AUC). The test results indicate that the deep neural network method achieves an accuracy of 95,56%, an F1 score of 79,24%, a precision of 91,96%, a recall of 85,52%, and an AUC of 85,52%. This study suggests that utilizing deep neural network data mining techniques, specifically with a cross-validation fold of 10, variations of six hidden layer encoder-decoder, relu, sigmoid activation function, optimizer Adam, and learning rate of 0,01, dropout rate of 0,2. Employing the Synthetic Minority Over-sampling Technique data preprocessing method, can effectively analyze thoracic patient survival data sets.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...