IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

DualFaceNet: augmentation consistency for optimal facial landmark detection and face mask classification

Songsri-in, Kritaphat (Unknown)
Rattaphun, Munlika (Unknown)
Kaewchada, Sopee (Unknown)
Ruang-on, Somporn (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

In an era where face masks are commonplace, facial recognition faces new challenges and opportunities. This study introduces DualFaceNet (DFN), a cutting-edge neural network that efficiently combines facial landmark detection with mask classification. Benefiting from multi-task learning (MTL) and enhanced with a unique consistency loss, DFN outperforms traditional single-task models. Tests using the reputable 300W dataset and a face mask dataset showcase DFN’s strengths: a significant reduction in landmark error to 5.42 and an increase in mask classification accuracy to 92.59%. These results highlight the potential of integrating MTL and custom loss functions in facial recognition. As face masks continue to be globally essential, DFN’s integrated approach offers a fresh perspective in facial recognition studies. Furthermore, DFN paves the way for adaptive facial recognition systems, emphasizing the adaptability needed in our current era.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...