IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

Transfer learning scenarios on deep learning for ultrasoundbased image segmentation

Bani Unggul, Didik (Unknown)
Iriawan, Nur (Unknown)
Kuswanto, Heri (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Deep learning coupled with transfer learning, which involves reusing a pretrained model's network structure and parameter values, offers a rapid and accurate solution for image segmentation. Differing approaches exist in updating transferred parameters during training. In some studies, parameters remain frozen or untrainable (referred to as TL-S1), while in others, they act as trainable initial values updated from the first iteration (TL-S2). We introduce a new state-of-the-art transfer learning scenario (TL-S3), where parameters initially remain unchanged and update only after a specified cutoff time. Our research focuses on comparing the performance of these scenarios, a dimension yet unexplored in the literature. We simulate on three architectures (Dense-UNet-121, Dense-UNet-169, and Dense-UNet-201) using an ultrasound-based dataset with the left ventricular wall as the region of interest. The results reveal that the TL-S3 consistently outperforms the previous state-of-the-art scenarios, i.e., TL-S1 and TL-S2, achieving correct classification ratios (CCR) above 0.99 during training with noticeable performance spikes post-cutoff. Notably, two out of three top-performing models in the validation data also originate from TL-S3. Finally, the best model is the Dense-UNet-121 with TL-S3 and a 20% cutoff. It achieves the highest CCR for training 0.9950, validation 0.9699, and testing data 0.9695, confirming its excellence.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...