IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 3: September 2024

Comparing logistic regression and extreme gradient boosting on student arguments

Wahyuningsih, Tri (Unknown)
Manongga, Danny (Unknown)
Sembiring, Irwan (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Identifying the effectiveness level and quality of students' arguments poses a challenge for teachers. This is due to the lack of techniques that can accurately assist in identifying the effectiveness and quality of students' arguments. This research aims to develop a model that can identify effectiveness categories in students' arguments. The method employed involves the logistic regression+XGBoost algorithm combined with separate implementations of term frequency-inverse document frequency (TF-IDF) and CountVectorizer. Student argument data were collected and processed using natural language processing techniques. The research results indicate that TF-IDF outperforms in identifying effectiveness classes in student arguments with an accuracy of 66.20%. The multi-output classification yielded an accuracy of 89.32% in the initial testing, which further improved to 92.34% after implementing one-hot encoding. A novel finding in this research is the superiority of TF-IDF as a technique for identifying effectiveness classes in student arguments compared to CountVectorizer. The implications of this research include the development of a model that can assist teachers in identifying the effectiveness level of students' arguments, thereby improving the quality of learning and enhancing students' argumentative competence.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...