International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 13, No 2: July 2024

An efficient floating point adder for low-power devices

Narayanappa, Manjula (Unknown)
Yellampalli, Siva S. (Unknown)



Article Info

Publish Date
01 Jul 2024

Abstract

With an increasing demand for power hungry data intensive computing, design methodologies with low power consumption are increasingly gaining prominence in the industry. Most of the systems operate on critical and noncritical data both. An attempt to generate a precision result results in excessive power consumption and results in a slower system. An attempt to generate a precision result results in excessive power consumption and results in a slower system. For non-critical data, approximate computing circuits significantly reduce the circuit complexity and hence power consumption. For non-critical data, approximate computing circuits significantly reduce the circuit complexity and hence power consumption. In this paper, a novel approximate single precision floating point adder is proposed with an approximate mantissa adder. The mantissa adder is designed with three 8-bit full adder blocks.

Copyrights © 2024






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...