International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 13, No 2: July 2024

A novel compression methodology for medical images using deep learning for high-speed transmission

Navaneethakrishnan, Shyamala (Unknown)
Shanmugam, Geetha (Unknown)



Article Info

Publish Date
01 Jul 2024

Abstract

Medical imaging is a rapidly growing field having a high impact on the early detection, diagnosis and surgical planning of diseases. Several imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US) imaging generate a higher volume of data, necessitating additional storage and communication requirements. Hence, image compression is utilized in medical field to reduce redundancy and alleviate memory and bandwidth issues. This paper presents a novel deep learning-based compression method to reduce the size of medical images. This method employs a deep convolutional neural network for learning compact representations of medical images, then coded by a Huffman encoder. The compression process is reversed to reconstruct the original image. Several tests are conducted to compare the results with other wellknown compression methods. The proposed model achieved a mean peak signal-to-noise ratio (PSNR) of 42.82 dB with storage space saving (SSS) of 96.15% for CT, 43.88 dB with SSS of 96.25% for MRI, 46.29 dB with SSS of 96.07% for US and 43.51 dB with SSS of 96.95% for X-ray images. The findings showed that the proposed compression technique could greatly compress the image size, saving storage space, facilitating better transmission and preserving critical diagnostic information.

Copyrights © 2024






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...