International Journal of Applied Power Engineering (IJAPE)
Vol 13, No 2: June 2024

Exploratory data analysis for electric vehicle driving range prediction: insights and evaluation

Mishra, Debani Prasad (Unknown)
Kumar, Prince (Unknown)
Rai, Priyanka (Unknown)
Kumar, Ayush (Unknown)
Salkuti, Surender Reddy (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

One of the biggest challenges of electric vehicle (EV) users has been predicting the amount of driving time their vehicles will have on one battery charge. Planning a trip and reducing range anxiety depends on an accurate range estimate. This study aims to anticipate the EV driving range using machine learning methods. In this research, several regression models for predicting EV driving range will be developed and compared. A real-world dataset comprising various factors affecting EV range, such as power, trip distance, energy consumption, driving style, and environmental factors, is used for analysis. The dataset is preprocessed using exploratory data analysis methods to manage missing values, outliers, and categorical variables. The findings of this study contribute to the expanding area of EV range prediction and provide EV buyers, producers, and regulators with insightful information. The user experience can be improved, EV adoption can be boosted, and effective charging infrastructure design is made possible with accurate range prediction. The study also highlights the importance of model selection and data pretreatment in making accurate predictions.

Copyrights © 2024






Journal Info

Abbrev

IJAPE

Publisher

Subject

Electrical & Electronics Engineering

Description

International Journal of Applied Power Engineering (IJAPE) focuses on the applied works in the areas of power generation, transmission and distribution, sustainable energy, applications of power control in large power systems, etc. The main objective of IJAPE is to bring out the latest practices in ...