Philosophically based EEG (electroencephalography) signal data processing is an engaging interdisciplinary approach and opens up new perspectives in understanding brain function. In this context, it is necessary to examine data from a technical or biological point of view and consider its metaphysical, epistemological and even ontological aspects. Ontology is a branch of metaphysics that deals with objects and the types of objects that exist according to one's metaphysical (or even physical) theory, their properties, and their relationship. This article attempts to provide a philosophical view of science based on ontology for processing EEG signal data, the data source of which is taken from brain waves. With the results of trials using the Artificial Neural Network (ANN) classification, an accuracy value of 46.73 was obtained. The Convolutional Neural Network (CNN) algorithm can also be used to process EEG signal data to determine a person's emotional level; this is proven in research results; although the overall accuracy of emotion recognition has increased significantly, several problems cause low accuracy in the DEAP and DREAMER data sets. There are also results of other experiments carried out using CNN, and the experimental results show that the weight of channels related to emotions is greater than that of different channels. The Continuous Capsule Network (CCN) algorithm and Deep Neural Network (DNN) algorithm can also be used to process EEG signal data to determine the level of emotion.
                        
                        
                        
                        
                            
                                Copyrights © 2024