PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol. 12 No. 2 (2024): September 2024

A Comparative Analysis of MultinomialNB, SVM, and BERT on Garuda Indonesia Twitter Sentiment

Prasetyo, Budi (Unknown)
Ahmad Yusuf Al-Majid (Unknown)
Suharjito (Unknown)



Article Info

Publish Date
30 Sep 2024

Abstract

This study investigates customer sentiment towards Garuda Indonesia Airlines (GIA) using sentiment analysis of Twitter data. The research aims to identify prevailing sentiments, uncover common themes in customer feedback, and provide recommendations for improving customer satisfaction and brand loyalty. A dataset of 1,250 tweets from March 2007 to July 2024 was collected and pre-processed, including cleaning, language detection, and tokenization. Sentiment analysis was conducted using three models: MultinomialNB, SVM, and BERT.The results indicate that BERT outperformed both MultinomialNB and SVM in sentiment classification accuracy, achieving 75.6%. This highlights the effectiveness of BERT in capturing contextual meaning within customer reviews. The findings of this research will contribute to a deeper understanding of customer sentiment towards GIA and inform strategies for enhancing customer experience and brand image.

Copyrights © 2024






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...