JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 11 No 2 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Sistem Diagnosa Stunting Menggunakan Teorema Bayes

Kamto, Kevin Arsan (Unknown)
Purnomo, Agus Sidiq (Unknown)



Article Info

Publish Date
10 Jun 2024

Abstract

Stunting is a chronic nutritional problem that impacts children's physical and cognitive growth. This research develops an expert system based on Bayes' Theorem to diagnose stunting, and utilizes artificial intelligence (AI) technology. The Bayes Theorem method is used for its ability to overcome data uncertainty and produce more accurate decisions. Data was collected through interviews with pediatricians and medical records from posyandu. The system was designed using flowcharts and DFD, then implemented and tested with samples of 30 children from the Kaligrenjeng Village Posyandu. The results of the diagnosis showed a 100% accuracy rate. Validation of the results shows the expert system according to the expert's diagnosis.

Copyrights © 2024






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...