JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 11 No 2 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Ekstraksi Fitur Warna dengan Histogram HSV untuk Klasifikasi Motif Songket Palembang

Yohannes, Yohannes (Unknown)
Al Rivan, Muhammad Ezar (Unknown)
Devella, Siska (Unknown)
Meiriyama, Meiriyama (Unknown)



Article Info

Publish Date
10 Jun 2024

Abstract

Palembang Songket is a type of traditional woven cloth that has been registered as Indonesia's intangible cultural heritage since 2013. Palembang Songket has many motifs including Bunga Cina, Cantik Manis, and Pulir. The motifs on Palembang Songket have different meanings which can influence the selling price of the Songket. Recognition and classification of Palembang Songket types and motifs can be done by utilizing computer technology such as digital image processing and machine learning. In this research, the classification of Palembang Songket motifs was carried out using color features with histograms in Hue, Saturation, and Value (HSV) space and the Support Vector Machine (SVM) machine learning algorithm. Testing was carried out on a classification system using 45 test images. The histogram of HSV and SVM methods with the best kernel, namely RBF, were able to classify Palembang Songket motifs with an accuracy of 0.956; precision of 0.94; recall of 0.933; and f1-score of 0.931.

Copyrights © 2024






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...