JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 11 No 3 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Implementasi Algoritma Naive Bayes dalam Meningkatkan Akurasi Diagnosa Penyakit Tumor Otak

Surianto, Stacyana Jesika (Unknown)
Putra, Samuel Anaya (Unknown)
Ananta, Willy Pramudia (Unknown)
Sitorus, Rizki Risdah (Unknown)
Ramadhani, Fanny (Unknown)



Article Info

Publish Date
13 Sep 2024

Abstract

A brain tumor is an abnormal growth of cells in the brain that often requires an accurate diagnosis from a radiologist. This study aims to implement the Naive Bayes algorithm in improving the accuracy of brain tumor diagnosis. Naive Bayes is a popular classification algorithm in data mining that can provide accurate results even with limited datasets. The study used a dataset of MRI images of brain tumors from Kaggle consisting of 2044 image samples with three classes: meningioma tumors, pituitary tumors, and no tumors. The process starts with image preprocessing, then feature extraction using Local Binary Pattern (LBP), and classification using Naive Bayes algorithm. The test results showed the best parameters of LBP were radius 1 and neighborliness 8, while the Naive Bayes model achieved 68% accuracy, 67% precision, and 66% recall in classifying all three classes of brain tumors. The study expands knowledge of the potential of the Naive Bayes algorithm in brain tumor diagnosis and may form the basis for further research.

Copyrights © 2024






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...