Bulletin of Electrical Engineering and Informatics
Vol 13, No 6: December 2024

Covid-19 forecasting model based on machine learning approaches: a review

Sayeed, Md Shohel (Unknown)
Hishamuddin, Siti Najihah (Unknown)
Song, Ong Thian (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

As coronavirus disease (Covid-19) it is a contagious disease that is spread by the SARS-CoV-2 virus, one of the most common causes of disease in humans. The disease was initially discovered in Wuhan, China, in 2019, and has now spread throughout the world, including Malaysia. A large number of people have lost their life partners and families because of this disease. Thus, in order for us to stop this epidemic spread, we have to implement social distance. The Covid-19 infection displays this type of behavior, which necessitates the development of mathematical and predictive modeling techniques capable of predicting possible disease patterns or trends, in order to assist the government and health authorities in predicting and preparing for potential outbreaks. The purpose of this paper is to provide an in-depth critique and analysis of the machine-learning approaches that have been implemented by researchers to predict Covid-19, based on existing research. As a result, future researchers will be able to use this paper as a valuable resource for their research related to the Covid-19 forecasting model.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...